Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 188: 109910, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31740237

RESUMO

To alleviate the harmful effects of antibiotics on the environment and human health, the stress response and molecular network of Bacillus under tetracycline stress were investigated using a proteomics approach. During the exposure process, Bacillus subtilis exhibited a strong adaptation mechanism. Cell membrane and intracellular reactive oxygen species (ROS) level returned to normal after 5 h. A total of 312 upregulated and 65 downregulated proteins were identified, mainly involved in metabolism and the synthesis of ribosomes, DNA, and RNA. After tetracycline exposure, the core metabolism network was accelerated to supply precursors for the synthesis of DNA, RNA, proteins, peptidoglycans, and saturated fatty acids that were involved in ribosome protection, and strengthened the cell wall and cell membrane. The signal transduction pathways involved were analyzed in association with the stress response of B. subtilis at 15 min of exposure to tetracycline. The primary damage to the ribosome by tetracycline activated a series of response proteins. Antitoxin and heat-shock proteins were activated for the global regulation of transcription and metabolism. Trigger factor Tig was upregulated to ensure proper initiation of transcription and aerobic respiration. Temperature-sensor protein VicR from the two-component system was used by the cell to regulate the composition of the cell wall and cell membrane. The over-consumption of metabolites, such as phosphoribosyl diphosphate (PRPP), purine nucleoside triphosphate (GTP), and acetyl-CoA forced the cells to assimilate more sugar for glycolysis. To this end, methyl-accepting chemotaxis proteins (MCPs) and sugar transportation protein PtsG were upregulated, simultaneously. Ultimately, peroxidase was activated to eliminate the redundant ROS, to minimize cell damage. These findings presented a system-level understanding of adaption processes of bacteria to antibiotic stress.


Assuntos
Adaptação Fisiológica/fisiologia , Antibacterianos/metabolismo , Bacillus subtilis/fisiologia , Estresse Fisiológico , Tetraciclina/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteômica , Transdução de Sinais , Tetraciclina/farmacologia
2.
Ecotoxicol Environ Saf ; 160: 328-341, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29857237

RESUMO

Erythromycin is one of the most widely used macrolide antibiotics. To present a system-level understanding of erythromycin stress and degradation, proteome, phospholipids and membrane potentials were investigated after the erythromycin degradation. Bacillus thuringiensis could effectively remove 77% and degrade 53% of 1 µM erythromycin within 24 h. The 36 up-regulated and 22 down-regulated proteins were mainly involved in spore germination, chaperone and nucleic acid binding. Up-regulated ribose-phosphate pyrophosphokinase and ribosomal proteins confirmed that the synthesis of protein, DNA and RNA were enhanced after the erythromycin degradation. The reaction network of glycolysis/gluconeogenesis was activated, whereas, the activity of spore germination was decreased. The increased synthesis of phospholipids, especially, palmitoleic acid and oleic acid, altered the membrane permeability for erythromycin transport. Ribose-phosphate pyrophosphokinase and palmitoleic acid could be biomarkers to reflect erythromycin exposure. Lipids, disease, pyruvate metabolism and citrate cycle in human cells could be the target pathways influenced by erythromycin. The findings presented novel insights to the interaction among erythromycin stress, protein interaction and metabolism network, and provided a useful protocol for investigating cellular metabolism responses under pollutant stress.


Assuntos
Antibacterianos/toxicidade , Bacillus thuringiensis/efeitos dos fármacos , Eritromicina/toxicidade , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glicólise , Humanos , Fosfolipídeos/metabolismo , Proteoma/metabolismo
3.
Water Res ; 124: 29-38, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28738271

RESUMO

The widespread, persistent and toxic organophosphorus esters (OPEs) have become one category of emerging environmental contaminants. Thus, it is in urgent need to develop a cost-effective and safe treatment technology for OPEs control. The current study is a comprehensive attempt to use UV/TiO2 heterogeneous photocatalysis for the degradation of a water dissolved OPEs, tris(2-chloroethyl) phosphate (TCEP). A pseudo-first order degradation reaction with a kobs of 0.3167 min-1 was observed, while hydroxyl radical may be the dominating reactive oxidative species. As the reaction proceeded, TCEP was transformed to a series of hydroxylated and dechlorinated products. The degradation efficiency was significantly affected by pH value, natural organic matters and anions, implying that the complete mineralization of TCEP would be difficult to achieve in actual water treatment process. Based on the proteomics analysis regarding the metabolism reactions, pathways and networks, the significant activation of transmembrane transport and energy generation in Escherichia coli exposed to preliminary degrading products suggested that they can be transported and utilized through cellular metabolism. Furthermore, the descending trend of stress resistance exhibited that the toxicity of products was obviously weakened as the treatment proceeded. In conclusion, hydroxylation and dechlorination of TCEP with incomplete mineralization were likewise effective for its detoxification, indicating that UV/TiO2 will be an alternative treatment method for OPEs control.


Assuntos
Organofosfatos/química , Proteoma , Bactérias/genética , Fosfatos , Fotoquímica , Titânio/química , Raios Ultravioleta , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...